Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525957

RESUMO

Protein phase separation plays a very important role in many biological processes and is closely related to the occurrence and development of some serious diseases. So far, the fluorescence imaging method and fluorescence correlation spectroscopy (FCS) have been frequently used to study the phase separation behavior of proteins. Due to the wide size distribution of protein condensates in phase separation from nano-scale to micro-scale in solution and living cells, it is difficult for the fluorescence imaging method and conventional FCS to fully reflect the real state of protein phase separation in the solution due to the low spatio-temporal resolution of the conventional fluorescence imaging method and the limited detection area of FCS. Here, we proposed a novel method for studying the protein phase separation process by objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS). In this study, CRDBP proteins were used as a model and respectively fused with fluorescent proteins (EGFP and mCherry). We first compared conventional FCS and Scan-FCS methods for characterizing the CRDBP protein phase separation behaviors and found that the reproducibility of Scan-FCS is significantly improved by the scanning mode. We studied the self-fusion process of mCherry-CRDBP and EGFP-CRDBP and observed that the phase change concentration of CRDBP was 25 nM and the fusion of mCherry-CRDBP and EGFP-CRDBP at 500 nM was completed within 70 min. We studied the effects of salt concentration and molecular crowding agents on the phase separation of CRDBP and found that salt can prevent the self-fusion of CRDBP and molecular crowding agents can improve the self-fusion of CRDBP. Furthermore, we found the recruitment behavior of CRDBP to ß-catenin proteins and studied their recruitment dynamics. Compared to conventional FCS, Scan-FCCS can significantly improve the reproducibility of measurements due to the dramatic increase of detection zone, and more importantly, this method can provide information about self-fusion and recruitment dynamics in protein phase separation.

2.
Anal Chim Acta ; 1291: 342219, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38280790

RESUMO

The detection of intrinsic protein fluorescence is a powerful tool for studying proteins in their native state. Thanks to its label-free and stain-free feature, intrinsic fluorescence detection has been introduced to polyacrylamide gel electrophoresis (PAGE), a fundamental and ubiquitous protein analysis technique, to avoid the tedious detection process. However, the reported methods of intrinsic fluorescence detection were incompatible with online PAGE detection or standard slab gel. Here, we fulfilled online intrinsic fluorescence imaging (IFI) of the standard slab gel to develop a PAGE-IFI method for real-time and quantitative protein detection. To do so, we comprehensively investigated the arrangement of the deep-UV light source to obtain a large imaging area compatible with the standard slab gel, and then designed a semi-open gel electrophoresis apparatus (GEA) to scaffold the gel for the online UV irradiation and IFI with low background noise. Thus, we achieved real-time monitoring of the protein migration, which enabled us to determine the optimal endpoint of PAGE run to improve the sensitivity of IFI. Moreover, online IFI circumvented the broadening of protein bands to enhance the separation resolution. Because of the low background noise and the optimized endpoint, we showcased the quantitative detection of bovine serum albumin (BSA) with a limit of detection (LOD) of 20 ng. The standard slab gel provided a high sample loading volume that allowed us to attain a wide linear range of 0.03-10 µg. These results indicate that the PAGE-IFI method can be a promising alternative to conventional PAGE and can be widely used in molecular biology labs.


Assuntos
Imagem Óptica , Soroalbumina Bovina , Eletroforese em Gel de Poliacrilamida
3.
Anal Chim Acta ; 1289: 342207, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245206

RESUMO

Electrophoresis titration chip (ETC) is a versatile tool for onsite and point-of-care quantification analyses because it affords naked-eye detection and a straightforward quantification format. However, it is vulnerable to changes in environmental temperature, which regulates the electrophoretic migration by affecting the ion mobility and the target recognition by influencing the enzyme activity. Therefore, the quantification accuracy of the ETC tests was severely compromised. Rather than using the dry bath or heating/cooling units, we proposed a facile model of dual calibration standards (DCS) to mathematically eliminate the effects of temperature on quantification accuracy. To verify our model, we deployed the ETC device at different temperatures ranging from 5 to 40 °C. We further utilized the DCS-ETC to determine the protein content and uric acid concentration in real samples outside the laboratory. All the experimental results showed that our model significantly stabilized the quantification recovery from 35.31-153.44 % to 99.38-103.44 % for protein titration; the recovery of uric acid titration is also stable at 96.25-106.42 %, suggesting the enhanced robustness of the ETC tests. Therefore, DCS-ETC is a field-deployable test that can offer reliable quantification performance without extra equipment for temperature control. We envision that it is promising to be used for onsite applications, including food safety control and disease diagnostics.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Ácido Úrico , Temperatura , Calibragem , Eletroforese , Proteínas
4.
J Chromatogr A ; 1713: 464571, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091846

RESUMO

Polyacrylamide gel electrophoresis (PAGE) is one of the most popular techniques for the separation and detection of nucleic acids. However, it requires a complicated detection procedure and offline detection format, which inevitably leads to band broadening and thus compromises the separation resolution. To overcome this problem, we developed an online PAGE (OPAGE) platform by integrating the gel electrophoresis apparatus with the gel imaging system, so as to obviate the need for the complicated detection procedure. Notably, OPAGE enabled the real-time monitoring of the separation process and the immediate imaging of the separation results once the electrophoresis ended. Using a series of synthetic DNAs with different lengths as samples, we demonstrated that the OPAGE platform enhanced 32-64 % of the number of theoretical plates, showed a robust dynamic range of 0.1-12.5 ng/µL, and realized a limit of detection as low as 0.08 ng/µL DNA. Based on our results, we anticipate that the OPAGE platform is a promising alternative to traditional nucleic acid gel electrophoresis for simple and high-resolution detection and quantification and nucleic acid.


Assuntos
DNA , Ácidos Nucleicos , Eletroforese em Gel de Poliacrilamida
5.
Langmuir ; 40(2): 1266-1276, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157426

RESUMO

Liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) has emerged as a fundamental principle underpinning cellular function and malfunction. However, we know little about the FUS phase transition process from individual molecules to nanoscale condensates, which plays important roles in neurodegenerative diseases. Here, we propose the fluorescence correlation spectroscopy (FCS) method to quantitatively study the phase separation process of FUS protein with the fluorescent tag-enhanced green fluorescent protein (EGFP), from individual molecules to nanoscale condensates. The characteristic diffusion time (τD) of the protein condensates can be obtained from the FCS curve, which increases with the growth of the protein hydration radius. The bigger the τD value of the protein condensates, the larger the condensates formed by the phase separation of FUS. By this method, we discovered that the critical concentration for FUS to phase separation was 20 nM. We then plotted FUS phase diagrams based on τD under different concentrations of NaCl and found that both low-salt and high-salt concentrations tended to promote FUS-EGFP phase separation. Our results showed that ATP has a good inhibitory effect on FUS phase separation, and its inhibition constant IC50 was 3.2 mM. Finally, we evaluated the inhibition efficiency of single-stranded DNA sequences (ssDNA) on FUS phase separation and demonstrated that ssDNA containing three copies of TCCCCGT had relatively strong inhibition efficiency. In summary, our work provides detailed insight into the FUS phase transition process from individual molecules to nanoscale condensates at nanomolar concentrations and can be exploited for drug screening of neurodegenerative diseases.


Assuntos
Proteína FUS de Ligação a RNA , Humanos , Doenças Neurodegenerativas/metabolismo , 60422 , Análise Espectral , Proteína FUS de Ligação a RNA/química
6.
J Phys Chem B ; 127(49): 10498-10507, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051203

RESUMO

The Coding Region Determinant-Binding Protein (CRDBP) is a carcinoembryonic protein, and it is overexpressed in various cancer cells in the form of granules. We speculated the formation of CRDBP granules possibly through liquid-liquid phase separation (LLPS) processes due to the existence of intrinsically disordered regions (IDRs) in CRDBP. So far, we did not know whether or how phase separation processes of CRDBP occur in single living cells due to the lack of in vivo methods for studying intracellular protein phase separation. Therefore, to develop an in situ method for studying protein phase separation in living cells is a very urgent task. In this work, we proposed an efficient method for studying phase separation behavior of CRDBP in a single living cell by combining in situ fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) with a fluorescence protein fusion technique. We first predicted and confirmed that CRDBP has phase separation in solution by conventional fluorescence imaging and FCS methods. And then, we in situ studied the phase separation behaviors of CRDBP in living cells and observed three states of CRDBP phase separation such as monomer state, cluster state, and granule state. We studied the effects of CRDBP truncated forms and its inhibitor on the CRDBP phase separation. Furthermore, we discovered the recruitment of CRDBP to ß-catenin protein in living cells and investigated the effects of CRDBP structures and inhibitor on CRDBP recruitment behavior. This finding may help us to further understand the mechanism of CRDBP protein for regulating Wnt signaling pathway. Additionally, our results documented that FCS/FCCS is an efficient and alternative method for studying protein phase separation in situ in living cells.


Assuntos
Proteínas de Transporte , Proteínas Intrinsicamente Desordenadas , Proteínas de Transporte/metabolismo , Cateninas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Grânulos Citoplasmáticos/metabolismo
7.
ACS Omega ; 8(39): 36588-36596, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810700

RESUMO

Deubiquitination is a reverse post-translational modification of ubiquitination and plays significant roles in various signal transduction cascades and protein stability. The p53 is a very important tumor-suppressor protein and closely implicates more than 50% of human cancers. Although extracellular studies on the deubiquitination of p53 were reported, the process of p53 deubiquitination in living cells due to the shortage of an efficient in situ method for single living cells is still not clear. In this study, we described an in situ method for studying p53 deubiquitination in living cells by combining fluorescence cross-correlation spectroscopy with a fluorescent protein labeling technique. We first constructed the stable cell line expressing EGFP-Ub-p53-mCherry as the substrate of p53 deubiquitination. Then, we established a method for in situ monitoring of the deubiquitination of p53 in living cells. Based on the amplitudes of fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy curves from living cells, we obtained the deubiquitination percentage for evaluating the level of p53 protein deubiquitination. Furthermore, we studied the effects of ubiquitin structures on p53 deubiquitination in living cells and found that the C-terminal Gly75-Gly76 motif of ubiquitin is a key location for p53 deubiquitination and the deubiquitination cannot occur when ubiquitin lacks the C-terminal Gly75-Gly76 motif. Our results documented that the developed strategy is an efficient method for in situ study of deubiquitination of proteins in living cells.

8.
Anal Chem ; 95(37): 13941-13948, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37653711

RESUMO

Isoelectric focusing (IEF) is a powerful tool for resolving complex protein samples, which generates IEF patterns consisting of multiplex analyte bands. However, the interpretation of IEF patterns requires the careful selection of isoelectric point (pI) markers for profiling the pH gradient and a trivial process of pI labeling, resulting in low IEF efficiency. Here, we for the first time proposed a marker-free IEF method for the efficient and accurate classification of IEF patterns by using a convolutional neural network (CNN) model. To verify our method, we identified 21 meat samples whose IEF patterns comprised different bands of meat hemoglobin, myoglobin, and their oxygen-binding variants but no pI marker. Thanks to the high throughput and short assay time of the microstrip IEF, we efficiently collected 1449 IEF patterns to construct the data set for model training. Despite the absence of pI markers, we experimentally introduced the severe pH gradient drift into 189 IEF patterns in the data set, thereby omitting the need for profiling the pH gradient. To enhance the model robustness, we further employed data augmentation during the model training to mimic pH gradient drift. With the advantages of simple preprocessing, a rapid inference of 50 ms, and a high accuracy of 97.1%, the CNN model outperformed the traditional algorithm for simultaneously identifying meat species and cuts of meat of 105 IEF patterns, suggesting its great potential of being combined with microstrip IEF for large-scale IEF analyses of complicated protein samples.


Assuntos
Aprendizado Profundo , Focalização Isoelétrica , Ponto Isoelétrico , Algoritmos , Carne
9.
Acc Chem Res ; 56(19): 2582-2594, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37706459

RESUMO

Resonance light-scattering correlation spectroscopy (RLSCS) is a new single-particle detection method with its working principle being like fluorescence correlation spectroscopy (FCS). RLSCS is obtained by autocorrelation function analysis on the measured fluctuation of the resonance light scattering (RLS) intensity occurring within a subfemtoliter volume when a single nanoparticle (such as gold nanoparticles (NPs) or silver (SNPs)) freely diffuses through the volume. The RLSCS technique can detect such parameters as concentration, diffusion coefficient (translation and rotation), etc. Compared with the FCS technique, the correlated fluorescence intensity signal in RLSCS is replaced with the RLS signal of the nanoparticles, overcoming some limits of the fluorescent probes such as photobleaching under high-intensity or long-term illumination. In this Account, we showcase RLSCS methods, theoretical models at different optical configurations, and some key applications. First, the RLSCS optical detection system was constructed based on the confocal optics, its theoretical model was proposed, and the diffusion behaviors of the nanoparticles in the solution were studied including the rotational and translational diffusion. And, methods were developed to measure the concentration, size, aspect ratio, and size distribution of the NPs. Second, based on the RLSCS methods, some detection strategies were developed for homogeneous DNA detection, immunoassay, apoptosis assay, self-thermophoresis of the nanomotor, and quantitative assay in single living cells. Meanwhile, a new fluorescence/scattering cross-correlation spectroscopy (FSCCS) method was proposed for monitoring the molecule-particle interaction. This method enriched the conventional fluorescence/fluorescence cross-correlation spectroscopy (FCCS) method. Third, using the EMCCD with high sensitivity and rapid response as an optical detector, two temporospatially resolved scattering correlation spectroscopy methods and their theoretical models were developed: total internal reflection (TIR) configuration-based spatially resolved scattering correlation spectroscopy (SRSCS) and dark-field illumination-based scattering correlation spectroscopy (DFSCS). These methods extended single-spot confocal RLSCS to imaging RLSCS, which makes RLSCS have the ability for multiple channel detection with temporospatial resolution. The method was successfully used for investigating the dynamic behaviors of gold NPs in live cells and obtained its temporospatial concentration distribution and diffusion behaviors. The final section of this Account outlines future directions in the development of RLSCS.


Assuntos
Disciplinas das Ciências Biológicas , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Luz
10.
Analyst ; 148(16): 3768-3775, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37439656

RESUMO

Newly synthesized proteins are closely related to a series of biological processes, including cell growth, differentiation, and signaling. The post-translational modifications (PTMs) of newly synthesized proteins help maintain normal cellular functions. Ubiquitination is one of the PTMs and plays a prominent role in regulating cellular functions. Although great progress has been made in studying the ubiquitination of newly synthesized proteins, the in vivo monitoring of the ubiquitination of newly synthesized proteins in living cells still remains challenging. In this study, we propose a new method for measuring the ubiquitination of newly synthesized proteins in living cells by combining a click reaction with fluorescence cross-correlation spectroscopy (FCCS). In this study, a puromycin derivative (Puro-TCO) and a fluorescence probe (Bodipy-TR-Tz) were synthesized, and then, the newly synthesized proteins in living cells were labelled with Bodipy-TR via the click reaction between Puro-TCO and Tz. Ubiquitin (Ub) in living cells was labelled with the enhanced green fluorescence protein (EGFP) by fusion using a gene engineering technique. FCCS was used to quantify the newly synthesized proteins with two labels (EGFP and Bodipy-TR) in living cells. After measurements, the cross-correlation (CC) value was used to evaluate the ubiquitination degree of proteins. Herein, we established a method for monitoring the ubiquitination of newly synthesized proteins with EGFP-Ub in living cells and studied the effects of the ubiquitin E1 enzyme inhibitor on newly synthesized proteins. Our preliminary results document that the combination of FCCS with a click reaction is an efficient strategy for studying the ubiquitination of newly synthesized proteins in vivo in living cells. This new method can be applied to basic research in protein ubiquitination and drug screening at the living-cell level.


Assuntos
Compostos de Boro , Ubiquitina , Ubiquitinação , Espectrometria de Fluorescência/métodos , Ubiquitina/química
11.
Analyst ; 148(15): 3498-3508, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37409399

RESUMO

Autophagy is a fundamental and phylogenetically conserved self-degradation process and plays a very important role in the selective degradation of deleterious proteins, organelles, and other macromolecules. Although flow cytometry and fluorescence imaging techniques have been used to assess autophagic flux, we remain less able to in vivo monitor autophagic flux in a highly sensitive, robust, and well-quantified manner. Here, we reported a new method for real-time and quantitatively monitoring autophagosomes and assessing autophagic flux in living cells based on fluorescence correlation spectroscopy (FCS). In this study, microtubule-associated protein 1A/1B-light chain 3B (LC3B) fused with an enhanced green fluorescent protein (EGFP-LC3B) was used as a biomarker to label autophagosomes in living cells, and FCS was used to monitor EGFP-LC3B labeled autophagosomes by using the characteristic diffusion time (τD) value and brightness per particle (BPP) value. By analyzing the distribution frequency of the τD values in living cells stably expressing EGFP-LC3B, mutant EGFP-LC3B (EGFP-LC3BΔG) and enhanced green fluorescent protein (EGFP), we found that the τD value greater than 10 ms was attributed to the signal of EGFP-LC3B labeled autophagosomes. So, we proposed a parameter PAP as an indicator to assess the basal autophagic activity and induced autophagic flux. This new method was able to evaluate autophagy inducers, early-stage autophagy inhibitors, and late-stage autophagy inhibitors. Compared with current methods, our method shows high spatiotemporal resolution and very high sensitivity for autophagosomes in low EGFP-LC3B expressing cells and will become an attractive and alternative method for biological and medical studies, some drug screening, and disease treatment.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Fagossomos/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Análise Espectral
12.
Biosens Bioelectron ; 237: 115482, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406479

RESUMO

Desalting of biosamples is crucial for analytical techniques intolerant to abundant salts. However, there is no simple tool to monitor the desalting of low-volume biosamples so far. Here we developed a handheld capacitively coupled contactless conductivity detector (hC4D) as a miniaturized device to measure the conductivity of 75 µL biosamples. Polyether-ether-ketone (PEEK) tubing was selected as the sample reservoir for sample loading via a pipette. Another pipetting of air pushed the sample solution out of the tubing to recollect the sample. Owing to the low sample consumption and easy sample recollection, hC4D is advantageous for testing expensive biosamples, such as viruses and cells. In addition, the whole process of sample injection, conductivity measurement, recollection, and calibration of conductivity can be completed within 1 min. To verify the feasibility of hC4D, we monitored the desalting progress of gel filtration (GF) of 200 µL blood samples, ultrafiltration (UF) of 300 µL virus samples, and dialysis of 7 mL cell samples. Three rounds of GF and UF completely removed the salts but led to poor sample recovery. In contrast, low concentrations of residual salts remained and better recovery was achieved after two rounds of GF and UF. We further utilized the hC4D to monitor the dialysis and tuned the salt concentration in the cell sample, such that we maintained the viability of cells in a low conductivity environment. These results indicated that hC4D is a promising tool for optimizing the desalting procedure of low-volume biosamples.


Assuntos
Técnicas Biossensoriais , Eletroforese Capilar , Eletroforese Capilar/métodos , Sais , Cetonas , Polietilenoglicóis , Condutividade Elétrica
13.
Anal Methods ; 15(24): 2971-2978, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37309647

RESUMO

Cholesterol (CHO) in human blood is one of the most frequently and crucially quantified substances in diagnostic laboratories. However, visual and portable point of care testing (POCT) methods have been rarely developed for the bioassay of CHO in blood samples. Here, we developed an electrophoresis titration (ET) model, a chip device of ∼60 grams, and a quantification method for the POCT of CHO in blood serum based on a moving reaction boundary (MRB). In this model, the selective enzymatic reaction is integrated with an ET chip for visual and portable quantification. At first, CHO reacted with cholesterol oxidase (CHOx) in the anode well, producing H2O2 and cholest-4-en-3-one in the solution. H2O2 further oxidized the colorless and chargeless leucocrystal violet (LCV) dye into violet colored positively charged crystal violet (CV+) and, under the influence of the electric field, the CV+ migrates in the ET channels and is titrated by the alkali of sodium hydroxide immobilized in the ET channels. The length covered by the MRB was measured as a function of the CHO content. The relevant experiments validated the feasibility of the model and method. Furthermore, the experiments revealed the high selectivity, portability, and visuality of the ET-MRB model, device, and method. Finally, the experiments showed a fair sensitivity of LOD of 5 µM, good linearity of 10-1000 µM (r2 = 0.9919), fair stability (intra-day RSD of less than 5.09% and an inter-day RSD of less than 6.36%), and high recovery (99.4-105%). All the data and results indicate the potential of the ET-MRB model, chip device, and method for POCT of CHO in human blood samples.


Assuntos
Peróxido de Hidrogênio , Soro , Humanos , Peróxido de Hidrogênio/química , Eletroforese/métodos , Colesterol Oxidase , Testes Imediatos
14.
Anal Chem ; 95(15): 6193-6197, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975388

RESUMO

Intrinsic fluorescence imaging (IFI) has been used for the stain-free detection of proteins in slab gel. However, complicated detection setups and small irradiation area limited the development of facile, online, and portable imaging of the whole slab gel. We here designed a quadruple UV LED array to produce even and powerful area light for direct irradiation of gel electrophoresis chip (GEC) at 275 nm. In addition, we only used a filter of 365 nm, a UV camera lens, and a CCD for IFI detection. We integrated the simple detection setup with the small GEC to construct the IFI-GEC device with a portable size of 15 × 15 × 38 cm. We detected three model proteins to demonstrate the good evenness of the LED array and the online imaging of the whole GEC. Furthermore, the reproducible IFI-GEC detection was completed within 10 min and the LOD was as low as 40 ng for lysozyme detection. All results indicated the potential of the IFI-GEC device for online and portable detection of proteins without staining.


Assuntos
Eletroforese , Proteínas , Imagem Óptica/métodos , Proteínas/análise , Coloração e Rotulagem
15.
Analyst ; 148(4): 752-761, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36633105

RESUMO

Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor progression. It is of great significance to establish a sensitive in situ assay strategy for MMP-9 activity in single living cells. Here a novel in situ single molecule spectroscopy method based on the fluorescence correlation spectroscopy (FCS) technique was proposed for measuring the MMP-9 activity at different locations within single living cells, using a fluorescent specific peptide and a reference dye as dual probes. The measurement principle is based on the decrease of the ratiometric translational diffusion time of dual probes in the detection volume due to the peptide cleavage caused by MMP-9. The peptide probe was designed to be composed of an MMP-9 cleavage and cell-penetrating peptide sequence that was labeled with a fluorophore and conjugated with a streptavidin (SAV) molecule. The ratiometric translational diffusion time was used as the measurement parameter to eliminate the effect of intracellular uncertain viscosity. The linear relationship between the ratiometric diffusion time and MMP-9 activity was established, and applied to the determination of enzymatic activity in cell lysates as well as the evaluation of the inhibitory effects of different inhibitors on MMP-9. More importantly, the method was successfully used to dynamically determine MMP-9 activity in single living cells or under the stimulation with phorbol 12-myristate 13-acetate (PMA) and inhibitors.


Assuntos
Metaloproteinase 9 da Matriz , Imagem Individual de Molécula , Peptídeos , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Acetato de Tetradecanoilforbol
16.
Anal Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607829

RESUMO

The protein corona of nanoparticles (NPs) plays a crucial role in determining NPs' biological fates. Here, a novel measurement strategy was proposed to in situ investigate the protein corona formed in the NPs with the home-built dual-wavelength laser-irradiated differenced resonance light scattering correlation spectroscopy (D-RLSCS) technique, combined with the modified generation method of the D-RLSCS curve. With the measurement strategy, the dissociation constants and the binding rates between proteins and gold nanoparticles (GNPs) were determined based on the binding-induced ratiometric diffusion change of NPs (the ratio of characteristic rotational diffusion time to translational one), using the formation of the protein corona of bovine serum albumin (BSA) or fibrinogen (FIB) on gold nanoparticles as a model. It was found that BSA shows a stronger binding constant and faster binding rate to gold nanospheres (GNSs) compared with those of FIB. Meanwhile, the dynamic behavior of the protein corona in a fluid flow mimicking biological vessels was further studied based on the combination of the D-RLSCS technique with a microfluidic channel. The measurement results indicated that some "loose" protein corona layers would strip off the surface of NPs within the microchannel due to the fluid sheath force. This method can provide the comprehensive information of a protein corona by averaging the diffusion behavior of many particles different from some conventional methods and overcome the shortcomings of conventional correlation spectroscopy methods.

17.
Anal Chem ; 94(36): 12407-12415, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36050288

RESUMO

Photoluminescence (PL) intermittency (or "blinking") is a unique characteristic of single quantum dot (QD) emission. Here, we report a novel single-molecule detection strategy for the intracellular mRNA of interest using the mRNA-induced nonblinking QD dimers as probes. The working principle of the method is that the DNA hybrid of the target DNA (or mRNA) with a biotin-modified ssDNA probe can induce two blinking streptavidin-modified QDs (SAV-QDs) conjugated. The formed QD dimer as a bright spot showed a nonblinking emission property, observed with total inner reflection fluorescence microscopy (TIRFM). In theory, one nonblinking spot indicated a target DNA (or mRNA). The experimental results from single-spot fluorescence trajectory analysis and single-particle brightness analysis based on TIRFM and fluorescence correlation spectroscopy (FCS) techniques verified this dimerization process of QDs or its induced nonblinking emission. Employing a target DNA with the same base sequences to Survivin mRNA as a model, the detection strategy was used to detect the target DNA concentration based on the linear relationship between the percentage of the nonblinking spots and the target DNA concentration. This single-molecule detection strategy was also successfully used for determining Survivin mRNA in a single HeLa cell. The method can simplify the hybridization steps, eliminate self-quenching and photobleaching of fluorophores, and reduce the influence of unspecific binding on the detection.


Assuntos
Pontos Quânticos , DNA/análise , DNA/genética , Dimerização , Células HeLa , Humanos , Pontos Quânticos/química , RNA Mensageiro/genética , Survivina
18.
Talanta ; 245: 123447, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430528

RESUMO

For designing and constructing a highly efficient CRET system, it is extremely important to systematically study the effects of reactants and the catalysts on the efficiency. In this paper, we investigated the effects of reactants and the catalyst hemin/G-quadruplex DNAzyme concentration, donor-acceptor ratio and distance on the CRET efficiency by CL imaging. The CRET system was based on hemin/G-quadruplex DNAzyme catalyzed luminol analogue L012 and hydrogen peroxide CL system, taking luminol analogue L012 as the energy donor and a quenching dye DABCYL labelled on the catalyst hemin/G-quadruplex instead of the donor as the energy acceptor. Our study showed that the concentrations of the CL reactants had no significant effect on the efficiency, while the concentration of the catalyst hemin/G-quadruplex had a great effect on the CRET efficiency. When the ratio of the energy donor to the acceptor was as high as 250, the efficiency was only reduced by 5.1%, which was quite different from that of FRET. In addition, a DNA double-stranded structure was designed at the end of G-quadruplex to control the distance between the donor and the acceptor. When the acceptor DABCYL was separated by different linker lengths (1, 5, 10, 20, and 30 base pairs) from the catalyst and the donor L012 molecules, the corresponding CRET efficiencies were 86.0%, 75.1%, 25.7%, 14.0%, and 5.0%, respectively. CL imaging was successfully used to study the efficiency of CRET with high throughput, low sample consumption, and high sensitivity. Our strategy would be beneficial to design and construct a highly efficient CRET system, enabling the interdisciplinary applications of CRET.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Técnicas Biossensoriais/métodos , Catálise , DNA Catalítico/química , Transferência de Energia , Hemina/química , Luminescência , Medições Luminescentes/métodos , Luminol/química
19.
Anal Chem ; 94(12): 5181-5189, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35293715

RESUMO

In situ quantitative analysis of enzymes such as phosphatase is important to understand a number of involved biological processes ranging from various metabolisms to signal transduction and cellular regulation. In this paper, a novel in situ measurement strategy was proposed to detect alkaline phosphatase (ALP) activity in different locations within single living cells. The principle is based on the measurement of the resonance light scattering brightness ratio (SBR) per moving nanoparticle that forms in an ALP-related chemical reaction. In the method, a novel resonance light scattering correlation spectroscopy (RLSCS) system was developed using two lasers for illumination or two detection channels. Using the gold nanoparticles (AuNPs) as probes, the Au@Ag nanoparticles (Au@Ag NPs) formed due to the ALP-catalyzed hydrolysis of ascorbic acid 2-phosphate (AAP) and the subsequent reduction-deposition reaction of Ag ions that occurred on the AuNPs. The SBR value per moving particle was determined based on the obtained RLS intensity traces and RLSCS curves. The SBR value was found to be not influenced by the intracellular viscosity and size that was confirmed in the experiments. The linear relation between the SBR and ALP activity was established and applied to detect ALP activity and evaluate the inhibition of different drugs. Finally, the method was successfully used to in situ measure ALP activity within living cells. The method overcomes the shortcoming of conventional methods that lack quantitative analysis and are susceptible to intracellular viscosity.


Assuntos
Ouro , Nanopartículas Metálicas , Fosfatase Alcalina/metabolismo , Corantes , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral
20.
Analyst ; 147(7): 1357-1366, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35253833

RESUMO

The identification of molecular targets for achieving beneficial effects from small-molecule drugs is a crucial and currently unsolved challenge, which leads to high costs and long development cycles. Therefore, it is urgent to develop methods for easily and quickly acquiring information about protein-drug interaction at a molecular level. In this study, we propose a novel method for the study of protein-drug interaction by fluorescence correlation spectroscopy (FCS) based on organic solvent-induced protein aggregation. We used ß-secretase (BACE-1) and dihydrofolate reductase (DHFR) as model proteins. Fluorescence-labelled proteins aggregated in aqueous solutions containing organic solvents. In the presence of drugs, the aggregation of proteins was inhibited greatly, and FCS was used to characterize protein aggregates. The decrease in the characteristic diffusion time (τD) of protein aggregates demonstrated a strong interaction between proteins and drug molecules. We presented a new parameter IC50 to assess the inhibitory effects of drugs on the basis of the changes in the τD of fluorescence-labelled proteins under different concentrations of the drugs in the presence of organic solvents. We acquired a remarkable difference in the IC50 values for different drugs and in terms of the trend, our results were consistent with those reported by other methods. Compared with current methods, our approach is simple, low-cost, and time-saving, and has the potential to become a promising and universal tool for drug screening at the molecular level.


Assuntos
Agregados Proteicos , Proteínas , Interações Medicamentosas , Solventes/química , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...